Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In general relativity, the values of constant terms in the equations of motions of planets and light have not been seriously discussed. Based on the Schwarzschild metric and the geodesic equations of the Riemann geometry, it is proved in this paper that the constant term in the time-dependent equation of motion of planet in general relativity must be equal to zero. Otherwise, when the correction term of general relativity is ignored, the resulting Newtonian gravity formula would change its basic form. Due to the absence of this constant term, the equation of motion cannot describe the elliptical and the hyperbolic orbital motions of celestial bodies in the solar gravitational field. It can only describe the parabolic orbital motion (with minor corrections). Therefore, it becomes meaningless to use general relativity calculating the precession of Mercury's perihelion. It is also proved that the time-dependent orbital equation of light in general relativity is contradictory to the time-independent equation of light. Using the time-independent orbital equation to do calculation, the deflection angle of light in the solar gravitational field is <mml:math display="inline"> <mml:mrow> <mml:mn>1.7</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> . But using the time-dependent equation to do calculation, the deflection angle of light is only a small correction of the prediction value <mml:math display="inline"> <mml:mrow> <mml:mn>0.87</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> of the Newtonian gravity theory with a magnitude order of <mml:math display="inline"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . The reason causing this inconsistency was the Einstein's assumption that the motion of light satisfied the condition <mml:math display="inline"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> in gravitational field. It leads to the absence of constant term in the time-independent equation of motion of light and destroys the uniqueness of geodesic in curved space-time. Meanwhile, light is subjected to repulsive forces in the gravitational field, rather than attractive forces. The direction of deflection of light is opposite, inconsistent with the predictions of present general relativity and the Newtonian theory of gravity. Observing on the earth surface, the wavelength of light emitted by the sun is violet shifted. This prediction is obviously not true. Practical observation is red shift. Finally, the practical significance of the calculation of the Mercury perihelion's precession and the existing problems of the light's deflection experiments of general relativity are briefly discussed. The conclusion of this paper is that general relativity cannot have consistence with the Newtonian theory of gravity for the descriptions of motions of planets and light in the solar system. The theory itself is not self-consistent too.
In general relativity, the values of constant terms in the equations of motions of planets and light have not been seriously discussed. Based on the Schwarzschild metric and the geodesic equations of the Riemann geometry, it is proved in this paper that the constant term in the time-dependent equation of motion of planet in general relativity must be equal to zero. Otherwise, when the correction term of general relativity is ignored, the resulting Newtonian gravity formula would change its basic form. Due to the absence of this constant term, the equation of motion cannot describe the elliptical and the hyperbolic orbital motions of celestial bodies in the solar gravitational field. It can only describe the parabolic orbital motion (with minor corrections). Therefore, it becomes meaningless to use general relativity calculating the precession of Mercury's perihelion. It is also proved that the time-dependent orbital equation of light in general relativity is contradictory to the time-independent equation of light. Using the time-independent orbital equation to do calculation, the deflection angle of light in the solar gravitational field is <mml:math display="inline"> <mml:mrow> <mml:mn>1.7</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> . But using the time-dependent equation to do calculation, the deflection angle of light is only a small correction of the prediction value <mml:math display="inline"> <mml:mrow> <mml:mn>0.87</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> of the Newtonian gravity theory with a magnitude order of <mml:math display="inline"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . The reason causing this inconsistency was the Einstein's assumption that the motion of light satisfied the condition <mml:math display="inline"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> in gravitational field. It leads to the absence of constant term in the time-independent equation of motion of light and destroys the uniqueness of geodesic in curved space-time. Meanwhile, light is subjected to repulsive forces in the gravitational field, rather than attractive forces. The direction of deflection of light is opposite, inconsistent with the predictions of present general relativity and the Newtonian theory of gravity. Observing on the earth surface, the wavelength of light emitted by the sun is violet shifted. This prediction is obviously not true. Practical observation is red shift. Finally, the practical significance of the calculation of the Mercury perihelion's precession and the existing problems of the light's deflection experiments of general relativity are briefly discussed. The conclusion of this paper is that general relativity cannot have consistence with the Newtonian theory of gravity for the descriptions of motions of planets and light in the solar system. The theory itself is not self-consistent too.
Based on general relativity, J. R. Oppenheimer proved that massive celestial bodies may collapse into singular black holes with infinite densities. By analyzing the original paper of Oppenheimer, this paper reveals that the calculations had a series and serious of mistakes. The basic problem is that the calculation supposes that the density of celestial body does not change with space-time coordinates. The density is firstly assumed invariable with space coordinates and then it is assumed invariable with time. But at last, the conclusion that the density of a celestial body becomes infinity is deduced. The premise contradicts with conclusion. In fact, there is no restriction on the initial density and radius for celestial body in the calculation. According to the calculation results of Oppenheimer, a cloud of thin gas may also collapse into singular black hole under the action of gravity. The calculations neglect great rotating speeds of massive and high density celestial bodies which would make them falling apart rather than collapsing into singularities. Because we do not know the function relations that material densities depend on space-time coordinates in advance, there exists the rationality problem of procedure using the Einstein's equation of gravity field to calculate material collapse. Besides these physical problems, the calculation of Oppenheimer also has some obvious mistakes in mathematics. Another improved method to calculate massive celestial body's collapse also has similar problems. The results are also unreliable. The conclusion of this paper is that up to now general relativity actually has not proved that massive celestial bodies may collapse into singularity black holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.