2023
DOI: 10.3390/s23146450
|View full text |Cite
|
Sign up to set email alerts
|

CoSOV1Net: A Cone- and Spatial-Opponent Primary Visual Cortex-Inspired Neural Network for Lightweight Salient Object Detection

Abstract: Salient object-detection models attempt to mimic the human visual system’s ability to select relevant objects in images. To this end, the development of deep neural networks on high-end computers has recently achieved high performance. However, developing deep neural network models with the same performance for resource-limited vision sensors or mobile devices remains a challenge. In this work, we propose CoSOV1net, a novel lightweight salient object-detection neural network model, inspired by the cone- and sp… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 79 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?