A novel class of one-dimensional (1D) plasmonic Ag@Cu2O core-shell heteronanowires have been synthesized at room temperature for photocatalysis application. The morphology, size, crystal structure and composition of the products were investigated by XRD, SEM, TEM, XPS, and UV-vis instruments. It was found the reaction time and the amount of Ag nanowires play crucial roles in the formation of well-defined 1D Ag@Gu(2)O core-shell heteronanowires. The resultant 1D Ag@Cu2O NWs exhibit much higher photocatalytic activity toward degradation of organic contaminants than Ag@Cu2O core-shell nanopartides or pure Cu2O nanospheres under solar light irradiation. The drastic enhancement in photocatalytic activity could be attributed to the surface plasmon resonance and the electron sink effect of the Ag NW cores, and the unique 1D core-shell nanostructure.