Abstract. The popularity of data centers in scientific computing has led to new architectures, new workload structures, and growing customerbases. As a consequence, the selection of efficient scheduling algorithms for the data center is an increasingly costlier and more difficult challenge. To address this challenge, and contrasting previous work on scheduling for scientific workloads, we focus in this work on portfolio schedulinghere, the dynamic selection and use of a scheduling policy, depending on the current system and workload conditions, from a portfolio of multiple policies. We design a periodic portfolio scheduler for the workload of the entire data center, and equip it with a portfolio of resource provisioning and allocation policies. Through simulation based on real and synthetic workload traces, we show evidence that portfolio scheduling can automatically select the scheduling policy to match both user and data center objectives, and that portfolio scheduling can perform well in the data center, relative to its constituent policies.