Accurate estimation of construction costs is of foremost importance in construction management processes. Considering the changes and unexpected situations, cost estimations should be revised during the construction process. This study investigates the predictability of earned value management (EVM)-based approaches using machine learning (ML) methods. A total of 2318 data points via 19 EVM-based cost estimation methods were created and six ML methods were used for the analyses. The planned and actual project data of the rough construction activities of a housing project completed in Türkiye were used. The ML methods considered consisted of adaptive neuro-fuzzy inference systems (ANFISs), artificial neural networks (ANNs), Gaussian process regression (GPR), long-short-term memory (LSTM), M5 model trees (M5TREEs), and support vector machines (SVMs). The created models were compared using performance criteria such as mean absolute percentage error (MAPE), relative root means square error (RRMSE), coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and overall index of model performance (OI). Moreover, radar charts, trend graphs, Taylor diagrams, violin plots, and error boxplots were used to evaluate the performance of the estimation models. The results revealed that the classical ANN model outperforms EVM-based cost methods that utilize current ML methods.