Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
ABSTRACT (maximum 200 words)A Galerkin-based family of numerical formulations is presented for solving nonlinear optimal control problems. This dissertation introduces a family of direct methods that calculate optimal trajectories by discretizing the system dynamics using Galerkin numerical techniques and approximate the cost function with Gaussian quadrature. In this numerical approach, the analysis is based on L 2 -norms. An important result in the theoretical foundation is that the feasibility and consistency theorems are proved for problems with continuous and/or piecewise continuous controls. Galerkin methods may be formulated in a number of ways that allow for efficiency and/or improved accuracy while solving a wide range of optimal control problems with a variety of state and control constraints. Numerical formulations using Lagrangian and Legendre test functions are derived. One formulation allows for a weak enforcement of boundary conditions, which imposes end conditions only up to the accuracy of the numerical approximation itself. Additionally, the multi-scale formulation can reduce the dimension of multi-scale optimal control problems, those in which the states and controls evolve on different timescales. Finally, numerical examples are shown to demonstrate the versatile nature of Galerkin optimal control.
SUBJECT TERMS