2019
DOI: 10.3934/dcdsb.2018196
|View full text |Cite
|
Sign up to set email alerts
|

Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat

Abstract: We explore an approach based on the theory of cosymmetry to model interaction of predators and prey in a two-dimensional habitat. The model under consideration is formulated as a system of nonlinear parabolic equations with spatial heterogeneity of resources and species. Firstly, we analytically determine system parameters, for which the problem has a nontrivial cosymmetry. To this end, we formulate cosymmetry relations. Next, we employ numerical computations to reveal that under said cosymmetry relations, a o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 21 publications
0
1
0
2
Order By: Relevance
“…In the results presented below obtained for 1D and 2D domains, [0, L x ] and [0, L x ] × 0, L y , respectively, it was sufficient to use 120 nodes in each spatial direction. More details of the numerical approach can be found in [24,25].…”
Section: The Modelmentioning
confidence: 99%
“…In the results presented below obtained for 1D and 2D domains, [0, L x ] and [0, L x ] × 0, L y , respectively, it was sufficient to use 120 nodes in each spatial direction. More details of the numerical approach can be found in [24,25].…”
Section: The Modelmentioning
confidence: 99%
“…Анализ ряда задач конвекции [Govorukhin, Yudovich, 1999;Абделхафиз, Цибулин, 2019] и популяционной динамики [Епифанов, Цибулин, 2016;Епифанов, Цибулин, 2017;Budyansky et al, 2019] показал, что косимметрия может получаться при некоторых дополнительных соотношениях на параметры задачи. При этом фактически выделяются некоторые подклассы систем, обладающих семействами стационарных состояний (распределений в случае пространственной неоднородности).…”
Section: Introductionunclassified
“…Системы с косимметрией демонстрируют мультистабильность с сосуществованием равновесий и колебательных режимов. Такие сценарии возникают, например, в задачах динамики популяций [Frischmuth et al, 2011;Епифанов, Цибулин, 2017;Budyansky et al, 2019]. Далее для анализа сценариев нарушения косимметрии и распада семейства решений применяется подход на основе селективной функции [Юдович, 2004].…”
Section: Introductionunclassified