In this paper, we first give an alternative characterization of the derived functor Ext via the Quillen model structure on the category of complexes induced by a given cotorsion pair [Formula: see text] in the category of modules, then based on this, we consider homological dimensions of complexes related to [Formula: see text]. As applications, we extend Gorenstein projective dimension of homologically bounded below complexes (in the sense of Christensen and coauthors) to unbounded complexes whenever R is Gorenstein. Moreover, we extend Stenström's FP-injective dimension from modules to complexes, define FP-projective dimension for complexes, and characterize Noetherian and von Neumann regular rings by these dimensions.