Few studies have been conducted on antimicrobial resistance in lactobacilli, presumably because of their nonpathogenic nature as anaerobic commensals. We assessed resistance in 43 type strains and isolates representing 14 species by using agar disk diffusion and MIC analysis in MRS medium. Most noteworthy were two general phenotypes displayed by nearly every strain tested: (i) they were more susceptible (up to 256-fold in some cases) to the deconjugated bile acid cholic acid than to the conjugate taurocholic or taurodeoxycholic acid, and (ii) they became susceptible to aminoglycosides when assayed on agar medium containing 0.5% fractionated bovine bile (ox gall). Two-dimensional MIC analyses of one representative strain, Lactobacillus plantarum WCFS1, at increasing concentrations of ox gall (0 to 30.3 mg/ml) displayed corresponding decreases in resistance to all of the aminoglycosides tested and ethidium bromide. This effect was clinically relevant, with the gentamicin MIC decreasing from >1,000 to 4 g/ml in just 3.8 mg of ox gall per ml. In uptake studies at pH 6.5, [G-3 H]gentamicin accumulation increased over control levels when cells of this strain were exposed to bile acids or reserpine but not when they were exposed to carbonyl cyanide m-chlorophenylhydrazone. The effect was dramatic, particularly with cholic acid, increasing up to 18-fold, whereas only modest increases, 3-and 5-fold, could be achieved with taurocholic acid and ox gall, respectively. Since L. plantarum, particularly strain WCFS1, is known to encode bile salt hydrolase (deconjugation) activity, our data indicate that mainly cholic acid, but not taurocholic acid, effectively permeabilizes the membrane to aminoglycosides. However, at pHs approaching neutral conditions in the intestinal lumen, aminoglycoside resistance due to membrane impermeability may be complemented by a potential efflux mechanism.