We experimentally reconstructed the structure of the N2Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N2 center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N2 principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level ab initio calculations. The agreement demonstrated the potential application of laser-based Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.