Background
The angiotensin II (AngII) type 1 receptor (AT1) regulates cardiovascular function by activating various signal pathways. The purpose of this study was to evaluate the effects of a mutant AT1 receptor on AngII responding blood pressure and cardiac hypertrophy in conjunction with altered AngII activation of RhoA and Akt.
Methods
A mutant AT1 receptor was constructed and overexpressed in FVB mice using a ubiquitous-expression vector pCAGGS. The phenotype and signal transduction of the transgenic mice were compared with the wild type (WT) mice.
Results
The transgenic mice showed a similar baseline phenotype as WT mice, but their blood pressure in response to continuous AngII infusion was significantly lower, as measured on day 3, 4, 7 and 14, with a difference of 20 mmHg by day 14. There was also a significantly larger heart to total body weight ratio in the WT mice, whose heart weight was 0.441 ± 0.008 % of total body weight compared to the transgenic mice at 0.416 ± 0.008 %. Aortic endothelial cells isolated from these transgenic mice displayed an altered signaling profile, such as diminished activation of Akt and RhoA in response to AngII. In contrast, Gαq coupling and ERK/JNK activation did not change.
Conclusion
The expression of an AT1 mutant receptor in the presence of WT receptor can effectively modulate AngII effected signaling. Furthermore, the elimination of Akt and RhoA activation by AngII significantly reduces but does not eliminate its hypertensive effect.