The in vitro anthelmintic effect of the extracts on Haemonchus contortus (H. contortus) of three forage species in the tropical dry forest is known; however, there is no information about the effects of the extract partitions, nor their chemical composition. The objectives of this study were to evaluate the in vitro ovicidal activity of H. contortus in extract partitions of the species Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce, and to identify the compounds present in the extract partitions with the highest activity by employing ultra HPLC Quadrupole orbitrap mass spectrometry. Four extract partitions, hexane, dichloromethane, ethyl acetate, and hydroethanolic from the three forage species were assessed in an inhibition of egg hatching (IEH) assay. The extract partitions with the highest anthelmintic activity (AA) were subjected to analysis, from which the tentative identification of the compounds was established. The extract partitions, including dichloromethane from Gliricidia sepium, ethyl acetate from Leucaena leucocephala, and hydroethanolic from Pithecellobium dulce showed a greater anthelmintic effect, with IC50 values of 0.39, 0.86, and 0.27 mg/mL for the IEH, respectively. Metabolites with in vitro AA potential included flavonoids, fatty acid esters, hydroxycinnamic acids, organic oxygenated compounds of the benzene class and substituted derivatives, phenolic glycosides, and phenols.