LES ESPACES DE BERKOVICH SONT ANGÉLIQUES par Jérôme PoineauRésumé. -Bien que les espaces de Berkovich définis sur un corps trop gros ne soient, en général, pas métrisables, nous montrons que leur topologie reste en grande partie gouvernée par les suites : tout point adhérent à une partie est limite d'une suite de points de cette partie et les parties compactes sont séquentiellement compactes. Notre preuve utilise de façon essentielle l'extension des scalaires et nous en étudions certaines propriétés. Nous montrons qu'un point d'un disque peut être défini sur un sous-corps de type dénombrable et que, lorsque le corps de base est algébriquement clos, tout point est universel : dans une extension des scalaires, il se relève canoniquement.