Countable homogeneous Steiner triple systems avoiding specified subsystems
Daniel Horsley,
Bridget S. Webb
Abstract:In this article we construct uncountably many new homogeneous locally finite Steiner triple systems of countably infinite order as Fraïssé limits of classes of finite Steiner triple systems avoiding certain subsystems. The construction relies on a new embedding result: any finite partial Steiner triple system has an embedding into a finite Steiner triple system that contains no nontrivial proper subsystems that are not subsystems of the original partial system. Fraïssé's construction and its variants are rich … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.