We consider the self-dual conformal classes on n#CP 2 discovered by LeBrun. These depend upon a choice of n points in hyperbolic 3-space, called monopole points. We investigate the limiting behavior of various constant scalar curvature metrics in these conformal classes as the points approach each other, or as the points tend to the boundary of hyperbolic space. There is a close connection to the orbifold Yamabe problem, which we show is not always solvable (in contrast to the case of compact manifolds). In particular, we show that there is no constant scalar curvature orbifold metric in the conformal class of a conformally compactified non-flat hyperkähler ALE space in dimension four. Contents 23 8. Questions 31 References 32