The percolation threshold of single-walled carbon nanotubes (SWCNTs) introduced into polystyrene (PS) via a latex-based route has been reduced by using conductive surfactants. The use of the conductive polymeric latex, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), in conjunction with SWCNTs leads to conductive composites with loadings of both constituents below their own individual percolation thresholds. The high concentration of PEDOT:PSS in the final composites raises the concern that the composite conductivity is a result of the presence of the PEDOT:PSS alone. To elucidate the cooperative nature of the two conductive components, the contribution of the SWCNTs to the overall composite conductivity is investigated by replacing the original high-quality SWCNTs with SWCNTs of a lower quality. Percolation thresholds recorded for systems utilizing the lower quality tubes stabilized with nonconductive surfactants were over 2 wt % SWCNTs (4 times that of previously reported systems). The introduction of PEDOT:PSS was, once again, found to lower the percolation threshold (to 0.3 wt %) and to increase the ultimate conductivity up to the level of a pure PEDOT:PSS/PS blend. In the PS/PEDOT:PSS−SWCNT systems, the role of the SWCNT network is proposed to be limited to the formation of a template or scaffold on which a (more or less) continuous PEDOT:PSS layer deposits. The ultimate conductivity is therefore determined by the PEDOT:PSS alone.