With the advances in brain imaging, magnetic resonance imaging (MRI) is evolving as a popular radiological tool in clinical diagnosis. Deep learning (DL) methods can detect abnormalities in brain images without an extensive manual feature extraction process. Generative adversarial network (GAN)-synthesized images have many applications in this field besides augmentation, such as image translation, registration, super-resolution, denoising, motion correction, segmentation, reconstruction, and contrast enhancement. The existing literature was reviewed systematically to understand the role of GAN-synthesized dummy images in brain disease diagnosis. Web of Science and Scopus databases were extensively searched to find relevant studies from the last 6 years to write this systematic literature review (SLR). Predefined inclusion and exclusion criteria helped in filtering the search results. Data extraction is based on related research questions (RQ). This SLR identifies various loss functions used in the above applications and software to process brain MRIs. A comparative study of existing evaluation metrics for GAN-synthesized images helps choose the proper metric for an application. GAN-synthesized images will have a crucial role in the clinical sector in the coming years, and this paper gives a baseline for other researchers in the field.