In the first paper of this series we studied the asymptotic behavior of Betti numbers, twisted torsion and other spectral invariants for sequences of lattices in Lie groups G. A key element of our work was the study of invariant random subgroups (IRSs) of G. Any sequence of lattices has a subsequence converging to an IRS, and when G has higher rank, the Nevo-Stuck-Zimmer theorem classifies all IRSs of G. Using the classification, one can deduce asymptotic statments about spectral invariants of lattices.When G has real rank one, the space of IRSs is more complicated. We construct here several uncountable families of IRSs in the groups SO(n, 1), n ≥ 2. We give dimension-specific constructions when n = 2, 3, and also describe a general gluing construction that works for every n. Part of the latter contruction is inspired by Gromov and Piatetski-Shapiro's construction of nonarithmetic lattices in SO(n, 1).