Algebraic numbers are the roots of integer polynomials. Each algebraic number α is characterized by its minimal polynomial Pα that is a polynomial of minimal positive degree with integer coprime coefficients, α being its root. The degree of α is the degree of this polynomial, and the height of α is the maximum of the absolute values of the coefficients of this polynomial. In this paper we consider the distribution of algebraic numbers α whose degree is fixed and height bounded by a growing parameter Q, and the minimal polynomial Pα is such that the absolute value of its derivative P'α (α) is bounded by a given parameter X. We show that if this bounding parameter X is from a certain range, then as Q → +∞ these algebraic numbers are distributed uniformly in the segment [-1+√2/3.1-√2/3]