2001
DOI: 10.1007/pl00005468
|View full text |Cite
|
Sign up to set email alerts
|

Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène

Abstract: On s'intéresse au calcul du champélectromagnétique diffracté par un obstacle conducteur recouvert d'un matériau hétérogène. Onétudie une méthode numérique consistantà coupler une approximation paŕ eléments finis de volumes avec des potentiels retardés de surface. Plusieurs formulations variationnelles espace-temps sont présentées. Onétablit des résultats de stabilité et de convergence pour la méthode proposée.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
14
0

Year Published

2004
2004
2017
2017

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 23 publications
(14 citation statements)
references
References 18 publications
0
14
0
Order By: Relevance
“…The basic idea underlying the proposed numerical scheme is to preserve the symmetry properties and the energy estimates valid for the continuous weak formulation. Its essential elements are: (1) finite elements for space discretization and an implicit Newmark finite differences scheme for time discretization in the FEM interval 1 ; (2) collocation technique for the first integral equation in (5) and Galerkin method for the second one (which in this case plays the role of the hyper-singular equation).…”
Section: Introductionmentioning
confidence: 99%
“…The basic idea underlying the proposed numerical scheme is to preserve the symmetry properties and the energy estimates valid for the continuous weak formulation. Its essential elements are: (1) finite elements for space discretization and an implicit Newmark finite differences scheme for time discretization in the FEM interval 1 ; (2) collocation technique for the first integral equation in (5) and Galerkin method for the second one (which in this case plays the role of the hyper-singular equation).…”
Section: Introductionmentioning
confidence: 99%
“…Important discretization techniques include Galerkin methods based on space-time variational formulations (cf. [3,30,36,2,1,16,33]) and methods based on bandlimited interpolation and extrapolation (cf. [41,39,40,42]).…”
Section: Introductionmentioning
confidence: 99%
“…The papers [2,3] study the numerical approximation of the single-and double-layer retarded acoustic potentials in three dimensions. Extensions of these results are many (see [1,4,16] and the references in the review [15]), all of them dealing with Galerkin methods. For the collocation method applied to the single-layer retarded potential, see [14].…”
mentioning
confidence: 99%