Applications of the multireference linearized coupled-cluster single-doubles (MRLCCSD) to atomic and molecular systems have been carried out. MRLCCSD is exploited to calculate the ground-state energies of HF, H2O, NH3, CH4, N2, BF, and C2 with basis sets, cc-pVDZ, cc-pVTZ and cc-pVQZ. The equilibrium bond lengths and vibration frequencies of HF, HCl, Li2, LiH, LiF, LiBr, BH, and AlF are computed with MRLCCSD and compared with the experimental data. The electron affinities of F and CH as well as the proton affinities of H2O and NH3 are also calculated with MRLCCSD. These results are compared with the results produced with second-order perturbation theory, linearized coupled-cluster doubles (LCCD), coupled-cluster doubles (CCD), coupled-cluster singles and doubles (CCSD), CCSD with perturbative triples correction (CCSD(T)). It is shown that all results obtained with MRLCCSD are reliable and accurate.