“…F .x n ; y n / D gx nC1 and F .y n ; x n / D gy nC1 ; F .u n ; v n / D gu nC1 and F .v n ; u n / D gv nC1 ; F .t n ; s n / D gt nC1 and F .s n ; t n / D gs nC1 ; (18) for all n 2 N. From the properties of coincidence points, x D x n , y D y n and u D u n , v D v n , namely, F .x; y/ D gx n , F .y; x/ D gy n and F .u; v/ D gu n , F .v; u/ D gv n for all n 2 N. As .gx; gt/, .gy; gs/ 2 E .G/, we get .gx; gt 0 /, .gy; gs 0 / 2 E .G/. Since F and g are G edge preserving, we obtain .F .x; y/ ; F .t 0 ; s 0 // D .gx; gt 1 / and .F .y; x/ ; F .s 0 ; t 0 // D .gy; gs 1 / 2 E .G/.…”