To reduce the effects of global warming, there is an increasing need for renewable energy sources. Several studies have been carried out on photovoltaic (PV) systems to maximize their potential as an alternative electricity generator. However, various power converters for high voltage ratio applications have multiple drawbacks. This research was carried out to develop a power converter topology connected between the PV and the load for the need. In this research, the high step-up DC-DC converter for high-voltage gain conversion ratio and high efficiency is proposed. Furthermore, the fuzzy logic-based Maximum Power Point Tracking (MPPT) technique connected to the power converter was used to maximize the power converted from PV in changing atmospheric conditions. The MPPT control with fuzzy logic controller (FLC) was analysed and compared with the perturb and observe (P&O) algorithm. The results showed that the FLC algorithm could control the high step-up (HSU) DC-DC converter with an output voltage of 29% higher than the P&O algorithm.