Electrospinning provides a simple and versatile route to produce nanocrystalline metal oxide layers with a highly porous fibrous morphology. The combination of small grain size, high surface area, and high porosity that includes both small and large pores is ideally suited for gas sensing. This work presents an overview of the recent developments in producing ultra‐sensitive metal oxide gas sensors by electrospinning of polymer solutions containing inorganic precursors that subsequently oxidize and crystallize into metal oxide nanoparticles. The key process parameters and their effect on microstructure evolution and gas sensing properties of TiO2 and SnO2 sensors produced by electrospinning are described. Copyright © 2010 John Wiley & Sons, Ltd.