Reconstruction of the seawater carbonate system is essential for an improved understanding of glacial‐interglacial oceanic carbon cycling and climate change. However, continuous high‐resolution ocean carbonate chemistry data are generally lacking for the Plio‐Pleistocene. Here, we present a deep Pacific carbonate ion saturation state (Δ[CO32−]) record spanning the last 5.1 Myr, reconstructed from the size‐normalized shell weight of planktonic foraminifer in the western tropical Pacific. Deep Pacific Δ[CO32−] has been modulated primarily by orbital obliquity since 5.1 Ma, during which it has exhibited in‐phase behavior with the 40‐Kyr obliquity cycle. Significantly, the amplitude of the 40‐Kyr Δ[CO32−] cycles has responded linearly to obliquity forcing throughout the Plio‐Pleistocene, independent of the late Pliocene intensification of Northern Hemisphere glaciation. We speculate that the obliquity signal in the deep Pacific Δ[CO32−] record reflects an ocean‐atmosphere circulation feedback mediated by migration of the Southern Hemisphere Westerlies.