Abstract:The thermal damage in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic-bonded explosive (PBX) was investigated using in situ smallangle neutron and X-ray scattering techniques. The microstructural evolution was quantitatively characterized by the model fitting parameters of total interfacial surface area (Sv) and void volume distribution. The Sv of HMX-PBX decreased markedly above 100 °C, indicating the movement of binder into the voids. After subsequent cooling to room temperature, the scattering intensity increased significantly with increasing storage time, and a new population of voids with average diameter of 20 nm was observed, accompanied by the gradual phase transition of HMX from δ-to β-phase. The experimental results implied that serious damage within the HMX-PBX was developed during storage after heating.