Coal-fired power generation is the main source of CO2 emission in China. To solve the problems of declined efficiency and increased costs caused by CO2 capture in coal-fired power systems, an integrated gasification fuel cell (IGFC) power generation technology was developed. The interaction mechanisms among coal gasification and purification, fuel cell and other components were further studied for IGFCs. Towards the direction of coal gasification and purification, we studied gasification reaction characteristics of ultrafine coal particles, ash melting characteristics and their effects on coal gasification reactions, the formation mechanism of pollutants. We further develop an elevated temperature/pressure swing adsorption rig for simultaneous H2S and CO2 removals. The results show the validity of the Miura-Maki model to describe the gasification of Shenhua bituminous coal with a good fit between the predicted DTG curves and experimental data. The designed 8–6–1 cycle procedure can effectively remove CO2 and H2S simultaneously with removal rate over 99.9%. In addition, transition metal oxides used as mercury removal adsorbents in coal gasified syngas were shown with great potential. The techniques presented in this paper can improve the gasification efficiency and reduce the formation of pollutants in IGFCs.