In diesel engines the fuel injection system produces the spray, which directly affects the combustion of the fuel, which in turn determines the production of pollutants. In spite of this, the details of this causal relationship remain unclear. There is, however, a lack of quantitative experimental data for determining and visualizing the cavitation inside real size diesel injector nozzle. The present work is devoted to analyze analytically the flow pattern inside the nozzle of a diesel engine working with hydrocarbon fuel (Diesel fuel) and to predict the relationship between the various flow parameters and occurrence of fuel cavitation in such nozzles. Basic physical parameters affecting this phenomenon are identified and quantified while the effect of nozzle geometry, fuel injection pressure, and engine cylinder temperature upon the flow pattern and occurrence of cavitation in such nozzles are assessed. In this study, a commercial computational fluid dynamics (CFD) package (FLUENT-T grid) is used while a computational grid is generated for the real geometry of diesel injector nozzle using (ANSYS). The suitability of the generated computational grid to give reliable results is examined using the suitable procedures and techniques. The results indicated that, cavitation modeling has reached a stage of maturity and it can usefully identify many of the cavitation structures present in internal nozzle flows and their dependence on nozzle design and flow conditions. The qualitative distributions and comparison of cavitation inception and distribution as well as flow parameters at the nozzle exit are also studied.