2009 IEEE International Symposium on Parallel &Amp; Distributed Processing 2009
DOI: 10.1109/ipdps.2009.5161160
|View full text |Cite
|
Sign up to set email alerts
|

Coupled thermo-hydro-mechanical modelling: A new parallel approach

Abstract: A hybrid MPI/OpenMP method of parallelising a bi-conjugate gradient iterative solver for coupled thermo-hydro-mechanical finite-element simulations in unsaturated soil is implemented and found to be efficient on modern parallel computers. In particular, a new method of parallelisation using a hybrid multi-threaded and message-passing approach depending on calculation size was implemented yielding better performance over more processing units. This was tested on both an Opteron 2218 2.6GHz Dual-Core processor b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2010
2010
2024
2024

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 10 publications
0
4
0
Order By: Relevance
“…The computation challenges related to the large spatial scales and timescales have been addressed by the application of domain decomposition and parallel algorithmic/computing techniques (Owen 2000;Thomas et al 2003;Vardon et al 2009). Although not presented in this paper, asymmetric compatible variants of the conjugate gradient solver, the biconjugate gradient (Bi-CG), conjugate gradient squared (CGS), and biconjugate gradient stabilized (Bi-CG STAB) methods have been implemented for nonlinear fully coupled problems providing significant time savings in this work.…”
Section: Computational Challengesmentioning
confidence: 99%
“…The computation challenges related to the large spatial scales and timescales have been addressed by the application of domain decomposition and parallel algorithmic/computing techniques (Owen 2000;Thomas et al 2003;Vardon et al 2009). Although not presented in this paper, asymmetric compatible variants of the conjugate gradient solver, the biconjugate gradient (Bi-CG), conjugate gradient squared (CGS), and biconjugate gradient stabilized (Bi-CG STAB) methods have been implemented for nonlinear fully coupled problems providing significant time savings in this work.…”
Section: Computational Challengesmentioning
confidence: 99%
“…Studying the numerical difficulties arising from the typically large and complex coupled systems and developing modeling solutions have been the focus of several research efforts. Performances of standard finite element (FE) modelling schemes are often improved either by using parallel solvers [1][2][3][4], implementing object-oriented programming paradigms [5], devising algebraic multi-grid methods [6,7] or applying staggered Newton schemes [1,8]. Recently, research studies have focused on developing model order reduction techniques in different branches of physics [9], or for coupled processes [10].…”
Section: Introductionmentioning
confidence: 99%
“…Computational efficiency for the FE-based modelling of coupled systems has been typically addressed by different high performance computing strategies (e.g. using parallel solvers [99,138,144,149], implementing object-oriented programming paradigm [148], devising algebraic multigrid methods [150,151], applying staggered Newton schemes [99,131]) to alleviate the computational burden.…”
Section: 6mentioning
confidence: 99%
“…Studying the numerical difficulties arising from the typically large and complex coupled systems and developing modeling solutions have been the focus of several research efforts. Performance of standard finite element (FE) modelling schemes are often improved either by using parallel solvers [99,138,144,149], implementing object-oriented programming paradigms [148], devising algebraic multi-grid methods [150,151] or applying staggered Newton schemes [99,131]. So far, very few research studies have however focused on developing model order reduction techniques specifically tailored to THM systems in a geomechanical context [22,81].…”
Section: Introductionmentioning
confidence: 99%