2022
DOI: 10.1016/j.cma.2021.114327
|View full text |Cite
|
Sign up to set email alerts
|

Coupled thermo-hydro-mechanical-phase field modeling for fire-induced spalling in concrete

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 29 publications
(4 citation statements)
references
References 71 publications
0
4
0
Order By: Relevance
“…The details of the applied models are provided in the next sections. [34] thermal analysis/thermal property prediction model based on the experiments, hydration kinetics, and composite material equivalence theory Mirković U. et al [35] thermal analysis/FEM/Lusas Academic software (Available online: https://www.lusas.com (accessed on 1 March 2022))/validation Zhang J. et al [12] fully coupled hygro-thermo-mechanical model/FEM/validation Sumarno A. et al [36] thermal analysis/2D model Zhang S. et al [37] thermal fields/numerical simulation/ABAQUS 2021/validation Yu H. et al [38] thermal fields/numerical simulation/validation 2023 Mansour D. et al [13] thermal analysis/3D-finite difference model/MS Excel Van Tran M. et al [39] thermal analysis/numerical simulation/Ansys Fluent software/validation Cai Y. et al [40] thermal field/3D-FEM simulation/ABAQUS/validation Lajimi N. et al [41] hygro-thermal analysis/numerical simulation/DIGITAL Visual FORTRAN 95 Ebid A. M. et al [14] State of the art on heat and mass transfer in self-compacting concrete and geopolymer concrete Wasik M. et al [42] the prototype of the experimental stand for heat and moisture transfer investigation in building materials Zhu J. et al [43] temperature field analysis/mesoscale simulation Prskalo S. et al [44] multi-field model/finite element code PANDAS Yin H. et al [45] multi-field model/3D flow lattice model (FLM) Rossat D. et al [46] thermo-hydro-mechanical model/FE simulation/validation Lyu C. et al [47] thermo-hydro-force coupling model/FE simulation/COMSOL Multiphysics/validation Li X. et al [48] thermal analysis/FEM/Midas FEA software/validation Meghwar S. L. et al [49] moisture diffusion/FE simulation/validation 2022 Yikici A. et al [50] thermal analysis/3D numerical model/finite volume method (FVM)/MATLAB/validation Cheng P. et al [51] coupled thermo-hydro-mechanical-phase field/2D numerical simulation/Fortran/The Intel ® oneAPI Math Kernel Library PARDISO Bondareva et al [52] mathematical model of the unsteady coupled heat and mass transfer in concrete containing PCM/validation Mostafavi S.A. et al [53] thermal model/MATLAB Zhang Z. et al [54] moisture transport/2D computational fluid dynamics (CFDs) model Smolana A. et al …”
Section: General Model For Heat and Mass Transfermentioning
confidence: 99%
“…The details of the applied models are provided in the next sections. [34] thermal analysis/thermal property prediction model based on the experiments, hydration kinetics, and composite material equivalence theory Mirković U. et al [35] thermal analysis/FEM/Lusas Academic software (Available online: https://www.lusas.com (accessed on 1 March 2022))/validation Zhang J. et al [12] fully coupled hygro-thermo-mechanical model/FEM/validation Sumarno A. et al [36] thermal analysis/2D model Zhang S. et al [37] thermal fields/numerical simulation/ABAQUS 2021/validation Yu H. et al [38] thermal fields/numerical simulation/validation 2023 Mansour D. et al [13] thermal analysis/3D-finite difference model/MS Excel Van Tran M. et al [39] thermal analysis/numerical simulation/Ansys Fluent software/validation Cai Y. et al [40] thermal field/3D-FEM simulation/ABAQUS/validation Lajimi N. et al [41] hygro-thermal analysis/numerical simulation/DIGITAL Visual FORTRAN 95 Ebid A. M. et al [14] State of the art on heat and mass transfer in self-compacting concrete and geopolymer concrete Wasik M. et al [42] the prototype of the experimental stand for heat and moisture transfer investigation in building materials Zhu J. et al [43] temperature field analysis/mesoscale simulation Prskalo S. et al [44] multi-field model/finite element code PANDAS Yin H. et al [45] multi-field model/3D flow lattice model (FLM) Rossat D. et al [46] thermo-hydro-mechanical model/FE simulation/validation Lyu C. et al [47] thermo-hydro-force coupling model/FE simulation/COMSOL Multiphysics/validation Li X. et al [48] thermal analysis/FEM/Midas FEA software/validation Meghwar S. L. et al [49] moisture diffusion/FE simulation/validation 2022 Yikici A. et al [50] thermal analysis/3D numerical model/finite volume method (FVM)/MATLAB/validation Cheng P. et al [51] coupled thermo-hydro-mechanical-phase field/2D numerical simulation/Fortran/The Intel ® oneAPI Math Kernel Library PARDISO Bondareva et al [52] mathematical model of the unsteady coupled heat and mass transfer in concrete containing PCM/validation Mostafavi S.A. et al [53] thermal model/MATLAB Zhang Z. et al [54] moisture transport/2D computational fluid dynamics (CFDs) model Smolana A. et al …”
Section: General Model For Heat and Mass Transfermentioning
confidence: 99%
“…Structural simulations are performed using a thermo-hydro-mechanical model coupled with the phase field computed using a FEniCS-based solver [8]. The mathematical model implemented here is inspired from [9][10][11]. It should be noted that-as a first step-the building material is pure concrete, that is, a reinforcing is not considered, yet.…”
Section: Structural Simulationmentioning
confidence: 99%
“…In the structural solver, the thermo‐hydral response and mechanical fields are solved in a staggered manner until convergence with a tolerance of ||r||<tolstag=103$||\bm {r}|| &lt; \mathrm{tol}_\mathrm{stag} = 10^{-3}$. The final forms of the partial differential equations for thermo–hydro–mechanical fracture response are taken from [11]. The one‐dimensional model set up to simulate a concrete wall of thickness 0.2 m along with the boundary conditions is shown in Figure 3A and 3B.…”
Section: Theoretical Backgroundmentioning
confidence: 99%
“…Though the coefficient κ 0 can be temperature‐dependent, in this work, a constant parameter is adopted due to the lack of consolidated test data. For the sake of simplicity, the degradation function ωfalse(dfalse)$\omega (d)$ is introduced in Equation (2.13), 59,66,73,74 with the implicit assumption that no heat will flow through fully softened cracks or, equivalently, the latter are insulating for heat conduction 66,75,76 . This simplification is acceptable since the opening of thermally induced cracks is usually very small such that the effects of convection and radiation can be neglected.…”
Section: General Formulationmentioning
confidence: 99%