Coupled THMC model-based prediction of hydraulic fracture geometry and size under self-propping phase-transition fracturing
Nanlin Zhang,
Fushen Liu,
Liangliang Jiang
et al.
Abstract:The Self-Propping Phase-transition Fracturing Technology (SPFT) represents a novel and environmentally friendly approach for a cost-effective and efficient development of the world’s abundant unconventional resources, especially in the context of a carbon-constrained sustainable future. SPFT involves the coupling of Thermal, Hydraulic, Mechanical, and Chemical (THMC) fields, which makes it challenging to understand the mechanism and path of hydraulic fracture propagation. This study addresses these challenges … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.