2009
DOI: 10.1016/j.physd.2009.04.001
|View full text |Cite
|
Sign up to set email alerts
|

Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
60
1
8

Year Published

2011
2011
2018
2018

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 81 publications
(71 citation statements)
references
References 20 publications
2
60
1
8
Order By: Relevance
“…Coherent coupling leads to much weaker phase locking than dissipative coupling and generates a relative phase distribution which is π-periodic rather than 2π-periodic. This matches the well-known differences in relative phase dynamics of reactively and dissipatively coupled classical oscillators which are usually understood by deriving approximate equations of motion for the relative phase of the oscillator assuming weak coupling [1,34]. …”
Section: Relative Phase Distributionsupporting
confidence: 77%
See 1 more Smart Citation
“…Coherent coupling leads to much weaker phase locking than dissipative coupling and generates a relative phase distribution which is π-periodic rather than 2π-periodic. This matches the well-known differences in relative phase dynamics of reactively and dissipatively coupled classical oscillators which are usually understood by deriving approximate equations of motion for the relative phase of the oscillator assuming weak coupling [1,34]. …”
Section: Relative Phase Distributionsupporting
confidence: 77%
“…As is the case for classical oscillators [1,33,34], the behavior can be very sensitive to the form of the coupling as well as its strength. We investigate two specific forms for the coupling involving either additional terms in the Hamiltonian of the system (coherent coupling) or additional dissipative terms in the master equation (dissipative coupling).…”
Section: Micromaser Modelmentioning
confidence: 99%
“…В частности, в работе [9] исследовалась синхронизация простой модели двух осцилляторов с предельным циклом, связанных с задержкой. Как известно, в подоб-ной системе можно выделить два основных типа связи: диссипативную (диффузионную) и инерционную (реактивную) [10,11]. Эти случаи отличаются устройством областей синхро-низации в пространстве параметров, в которых синхронный режим является устойчивым, причем при инерционной связи режим синхронизации становится бистабильным: возможна синхронизация как на синфазной, так и на противофазной моде.…”
Section: а б адилова с а герасимова н м рыскинunclassified
“…1), made of two oscillators of mass m 1 and m 2 , respectively, linked each other and to the ground by cubic elastic springs and Van Der Pol dampers. It represents a class of coupled Duffing-Van Der Pol oscillators (see [22][23][24][25][26][27][28]). The linear coefficients of the springs and of the dashpots are denoted by k i1 and c i1 , respectively, and their cubic coefficients by k i3 and c i3 (i = 0, 1, 2).…”
Section: The Modelmentioning
confidence: 99%