Water breaks through along fractures is a major concern in tight sandstone reservoirs with a bottom aquifer. Analytical models fail to handle the three-dimensional two-phase flow problem for partially penetrating inclined fractures, so time-consuming numerical simulation are often used for this problem. This paper presents an efficient semianalytical model for this problem considering three-dimensional fractures and two-phase flow. In the model, the hydraulic fracture is handled discretely with a numerical discrete method. The three-dimensional volumetric source function in real space and superposition principle are employed to solve the model analytically for fluid flow in the reservoir. The transient flow equations for flow in three-dimensional inclined fractures are solved by the finite difference method numerically, in which two-phase flow and stress-dependent properties are considered. The eventual solution of the model and transient responses are obtained by coupling the model for flow in the reservoir and discrete fracture dynamically. The validation of the semianalytical model is demonstrated in comparison to the solution of the commercial reservoir simulator Eclipse. Based on the proposed model, the effects of some critical parameters on the characteristics of water and oil flow performances are analyzed. The results show that the fracture conductivity, fracture permeability modulus, inclination angle of fractures, aquifer size, perforation location, and wellbore pressure drop significantly affect production rate and water breakthrough time. Lower fracture conductivity and larger inclination angle can delay the water breakthrough time and enhance the production rate, but the increment tends to decline gradually. Furthermore, water breakthrough will occur earlier if the wellbore pressure drop and aquifer size are larger. Besides, the stress sensitivity and perforation location can delay the water breakthrough time.