With the large-scale grid connection of renewable energy sources, the frequency stability problem of the power system has become increasingly prominent. At the same time, the development of cloud computing and its applications has attracted people’s attention to the high energy consumption characteristics of datacenters. Therefore, it was proposed to use the characteristics of the high power consumption and high flexibility of datacenters to respond to the demand response signal of the smart grid to maintain the stability of the power system. Specifically, this paper establishes a synthetic model that integrates multiple methods to precisely control and regulate the power consumption of the datacenter while minimizing the total adjustment cost. First, according to the overall characteristics of the datacenter, the power consumption models of servers and cooling systems were established. Secondly, by controlling the temperature, different kinds of energy storage devices, load characteristics and server characteristics, the working process of various regulation methods and the corresponding adjustment cost models were obtained. Then, the cost and penalty of each power regulation method were incorporated. Finally, the proposed dynamic synthetic approach was used to achieve the goal of accurately adjusting the power consumption of the datacenter with least adjustment cost. Through comparative analysis of evaluation experiment results, it can be observed that the proposed approach can better regulate the power consumption of the datacenter with lower adjustment cost than other alternative methods.