Direct measurement experiments on the mode conversion to the electron Bernstein wave (EBW) have been conducted in dipole confinement torus plasmas for three excitation scenarios; i.e. perpendicular injections of an eXtraordinary mode (X-mode) from the low-and high-magnetic-field sides, and the oblique injection of an Ordinary mode (O-mode) from the low-magnetic-field side. By inserting probe antennas into plasmas, wave propagation has been directly measured. At plasma conditions for the EBW excitation, several characteristics which indicate the mode conversion to the EBWs have been observed; i.e. a short wavelength wave, an electrostatic and longitudinal mode, backward propagation at the upper hybrid resonance (UHR) region. Meanwhile, the wavelengths experimentally observed might be slightly longer than those of theoretical prediction. In the case of the oblique injection of the O-mode, it has been identified that the window of the injection angle for the excitation of the EBW would be quite limited, and the optimum angle seems to be roughly in agreement with theory. These experimental results might support that the electromagnetic waves injected outside of torus plasmas reach to the UHR region and convert wave characteristics to the EBWs for three excitation scenarios.