This work compares two technologies for the remediation of metal-polluted mine tailings based on lab-scale bioleaching experiments performed in (a) conventional agitated slurry-phase reactors and (b) in situ electrokinetic percolation. While ex situ bioleaching in agitated reactors has been widely studied, only a few previous works have studied the in situ option that couples bioleaching and electrokinetics. Real mine tailings from an abandoned sphalerite mine in southern Spain were used. The leaching medium was externally generated in a bioreactor using an autochthonous acidophilic culture and then added to tailings in batch experiments. This medium enabled metal leaching from mine tailings without the stringent operating conditions required by a classic bioleaching process. Metal removal efficiencies and kinetic rate constants after 15 d of treatments were calculated. Additionally, advantages or disadvantages between the two methods were discussed. The results for the innovative EK-percolation method showed rates and efficiencies that were comparable to, and in some cases better than, those achieved with conventional stirred slurry systems.