Coupling Taguchi Experimental Designs with Deep Adaptive Learning Enhanced Artificial Intelligence Process Models: A Novel Case in Promising Experimental Cost Savings Possibilities in Manufacturing Process Development
Syed Wasim Hassan Zubair,
Syed Muhammad Arafat,
Sarmad Ali Khan
et al.
Abstract:The Aluminum alloy AA7075 workpiece material is observed under dry finishing turning operation. This work is an investigation reporting promising potential of deep adaptive learning enhanced artificial intelligence process models for L18 (6133) Taguchi orthogonal array experiments and major cost saving potential in machining process optimization. Six different tool inserts are used as categorical parameter along with three continuous operational parameters i.e., depth of cut, feed rate and cutting speed to stu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.