In
recent years the interaction of organophosphates and imines,
which is at the core of Brønsted acid organocatalysis, has been
established to be based on strong ionic hydrogen bonds. Yet, besides
the formation of homodimers consisting of two acid molecules and heterodimers
consisting of one acid and one base, also multimeric molecular aggregates
are formed in solution. These multimeric aggregates consist of one
base and several acid molecules. The details of the intermolecular
bonding in such aggregates, however, have remained elusive. To characterize
composition-dependent bonding and bonding dynamics in these aggregates,
we use linear and nonlinear infrared (IR) spectroscopy at varying
molar ratios of diphenyl phosphoric acid and quinaldine. We identify
the individual aggregate species, giving rise to the structured, strong,
and very broad infrared absorptions, which span more than 1000 cm
–1
. Linear infrared spectra and density functional theory
calculations of the proton transfer potential show that doubly ionic
intermolecular hydrogen bonds between the acid and the base lead to
absorptions which peak at ∼2040 cm
–1
. The
contribution of singly ionic hydrogen bonds between an acid anion
and an acid molecule is observed at higher frequencies. As common
to such strong hydrogen bonds, ultrafast IR spectroscopy reveals rapid,
∼ 100 fs, dissipation of energy from the proton transfer coordinate.
Yet, the full dissipation of the excess energy occurs on a ∼0.8–1.1
ps time scale, which becomes longer when multimers dominate. Our results
thus demonstrate the coupling and collectivity of the hydrogen bonds
within these complexes, which enable efficient energy transfer.