α-Glucosidase was immobilized onto an epoxy-activated resin (Eupergit C) to catalyze maltose into isomaltooligosaccharides (IMO), and then the effects of organic-aqueous media on the enzymatic properties of immobilized α-glucosidase were examined. An immobilization efficiency of 79.61% was obtained under the condition of pH 6.0, ionic strength of 2.0 M, and 30 mg of protein/g of resin. The butyl acetate-aqueous biphasic system was found to significantly improve the catalytic activity of the immobilized enzyme and the yield of IMO. The highest yield of IMO (50.83%, w/w) was obtained at pH 4.5 and 55 °C in a butyl acetate/buffer system (25:75, v/v). In addition, the immobilized enzyme particles were distributed into the organic phase after the completion of transglycosylation, which facilitates the separation and recycling use of the immobilized enzyme. Immobilized α-glucosidase retains a robust reusability in this continuous operation model. The present findings are of potential in improving the IMO manufacturing process.