Novel approaches
to modify the spectral output of the sun have
seen a surge in interest recently, with triplet–triplet annihilation
driven photon upconversion (TTA-UC) gaining widespread recognition
due to its ability to function under low-intensity, noncoherent light.
Herein, four diphenylanthracene (DPA) dimers are investigated to explore
how the structure of these dimers affects upconversion efficiency.
Also, the mechanism responsible for intramolecular upconversion is
elucidated. In particular, two models are compared using steady-state
and time-resolved simulations of the TTA-UC emission intensities and
kinetics. All dimers perform TTA-UC efficiently in the presence of
the sensitizer platinum octaethylporphyrin. The meta-coupled dimer
1,3-DPA
2
performs best yielding a 21.2% upconversion quantum
yield (out of a 50% maximum), which is close to that of the reference
monomer DPA (24.0%). Its superior performance compared to the other
dimers is primarily ascribed to the longer triplet lifetime of this
dimer (4.7 ms), thus reinforcing the importance of this parameter.
Comparisons between simulations and experiments reveal that the double-sensitization
mechanism is part of the mechanism of intramolecular upconversion
and that this additional pathway could be of great significance under
specific conditions. The results from this study can thus act as a
guide not only in terms of annihilator design but also for the design
of future solid-state systems where intramolecular exciton migration
is anticipated to play a major role.