A B S T R A C T Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during perfusion of their isolated hindquarters. Glucose utilization by the hindquarter was the same in exercised and control rats perfused in the absence of added insulin; however, when insulin (30-40,000 MU/ml) was added to the perfusate, glucose utilization was greater after exercise. Prior exercise lowered both, the concentration of insulin that half-maximally stimulated glucose utilization (exercise, 150 ,U/ml; control, 480 ,gU/ml) and modestly increased its maximum effect.The increase in insulin sensitivity persisted for 4 h following exercise, but was not present after 24 h. The rate-limiting step in glucose utilization enhanced by prior exercise appeared to be glucose transport across the cell membrane, as in neither control nor exercised rats did free glucose accumulate in the muscle cell.Following exercise, the ability of insulin to stimulate the release of lactate into the perfusate was unaltered; however its ability to stimulate the incorporation of ['4C]glucose into glycogen in certain muscles was enhanced. Thus at a concentration of 75 AU/ml insulin stimulated glycogen synthesis eightfold more in the fast-twitch red fibers of the red gastrocnemius than it did in the same muscle of nonexercised rats. In contrast, insulin only minimally increased glycogen synthesis in the fast-twitch white fibers of the gastrocnemius, which were not glycogen-depleted. The uptake of 2-deoxyglucose by these muscles followed a similar pattern suggesting that glucose transport was also differentially enhanced. Prior exercise did not enhance