CoVaR with volatility clustering, heavy tails and non-linear dependence
Michele Leonardo Bianchi,
Giovanni De Luca,
Giorgia Rivieccio
Abstract:In this paper we estimate the conditional value-at-risk by fitting different multivariate parametric models capturing some stylized facts about multivariate financial time series of equity returns: heavy tails, negative skew, asymmetric dependence, and volatility clustering. While the volatility clustering effect is got by AR-GARCH dynamics of the GJR type, the other stylized facts are captured through non-Gaussian multivariate models and copula functions. The CoVaR ≤ is computed on the basis on the multivaria… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.