Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recently the covariance based hardware selection problem has been shown to be of the mixed integer convex programming (MICP) class. While such a formulation provides a route to global optimality, use of the branch and bound search procedure has limited application to fairly small systems. The particular bottleneck is that during each iteration of the branch and bound search, a fairly slow semi-definite programming (SDP) problem must be solved to its global optimum. In this work, we illustrate that a simple reformulation of the MICP and subsequent application of the generalized Benders decomposition algorithm will result in massive reductions in computational effort. While the resulting algorithm must solve multiple mixed integer linear programs, this increase in computational effort is significantly outweighed by the reduction in the number of SDP problems that must be solved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.