2022
DOI: 10.1371/journal.pone.0266752
|View full text |Cite
|
Sign up to set email alerts
|

Covariate adjustment of spirometric and smoking phenotypes: The potential of neural network models

Abstract: To increase power and minimize bias in statistical analyses, quantitative outcomes are often adjusted for precision and confounding variables using standard regression approaches. The outcome is modeled as a linear function of the precision variables and confounders; however, for many complex phenotypes, the assumptions of the linear regression models are not always met. As an alternative, we used neural networks for the modeling of complex phenotypes and covariate adjustments. We compared the prediction accur… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?