Methyl acrylate/acrylonitrile copolymers (MA/AN) were reactively compatibilized as the dispersed phase into poly(ethylene) (PE) for potential hydrocarbon barrier materials. The MA/AN was made reactive by including p‐aminostyrene (PAS), yielding terpolymers (MA/AN/PAS) with pendant primary amine functionality (number average molecular weight
trueM¯n = 65–133 kg mol−1, dispersity (Đ)=1.83–2.53, molar composition of PAS in copolymer FPAS = 0.03–0.14, molar composition of AN = FAN = 0.27–0.52). The non‐functional MA/AN and amino functional MA/AN/PAS were each melt blended into PE that was grafted with maleic anhydride (PE‐g‐MAnn) at 200 °C at 70:30 wt % PE‐g‐MAnn:co/terpolymer. After extrusion, the dispersed phase particle size (volume to surface area diameter,
〈D〉vs) was coarse (12.6 μm) for the non‐reactive blend whereas it was much lower for the reactive blend (
〈D〉vs= 1.2 μm). Coarsening after annealing at 150 °C was slow, but the domain sizes increased only slightly for both cases. The reactive blend was deemed sufficiently stable and thus was suitable as a candidate barrier material for further testing against olefins. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44177.