In this work, we studied the area coverage control problem (ACCP) based on the time cost metric of a robot network with an input disturbance in a dynamic environment, which was modeled by a time-varying risk density function. A coverage control method based on the time cost metric was proposed. The area coverage task that considers the time cost consists of two phases: the robot network is driven to cover the task area with a time-optimal effect in the first phase; the second phase is when the accident occurs and the robot is driven to the accident site at maximum speed. Considering that there were movable objects in the task area, a time-varying risk density function was used to describe the risk degree at different locations in the task area. In the presence of the input disturbance, a robust controller was designed to drive each robot, with different maximum control input values, to the position that locally minimized the time cost metric function in a fixed time, and the conditions for maximum control input were obtained. Finally, simulation results and comparison result are presented in this paper.