Abstract:The covering relation in the lattice of subuniverses of a finite distributive lattice is characterized in terms of how new elements in a covering sublattice fit with the sublattice covered. In general, although the lattice of subuniverses of a finite distributive lattice will not be modular, nevertheless we are able to show that certain instances of Dedekind's Transposition Principle still hold. Weakly independent maps play a key role in our arguments.1991 Mathematics subject classification {Amer. Math. Soc): … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.