2000
DOI: 10.1017/s0140525x00974028
|View full text |Cite
|
Sign up to set email alerts
|

Covert REM sleep effects on REM mentation: Further methodological considerations and supporting evidence

Abstract: Whereas many researchers see a heuristic potential in the covert REM sleep model for explaining NREM sleep mentation and associated phenomena, many others are unconvinced of its value. At present, there is much circumstantial support for the model, but validation is lacking on many points. Supportive findings from several additional studies are summarized with results from two new studies showing (1) NREM mentation is correlated with duration of prior REM sleep, and (2) REM sleep signs (eye movements, phasic E… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
21
0

Year Published

2008
2008
2018
2018

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 40 publications
(22 citation statements)
references
References 286 publications
(412 reference statements)
1
21
0
Order By: Relevance
“…It is interesting to note that REM-like 1.5–3.0 Hz hippocampal/parahippocampal activity increased during the transition from wakefulness to sleep, reaching an average of 82% of tonic REM just shortly after the first electrophysiological signs of sleep (Bódizs et al, 2005). The REM-like 1.5–3.0 Hz hippocampal/parahippocampal activity observed during the wake–sleep transition in this study supports the covert-REM sleep hypothesis of dreaming, which suggests that “hidden” REM sleep features are present during sleep onset, explaining the vivid hypnagogic imagery (Nielsen, 2000). Intriguingly, the two sleep states accompanied by the most vivid imagery (sleep onset and REM sleep) are indeed characterized by a similar hippocampal/parahippocampal slow activity pattern.…”
Section: Hippocampal–neocortical Dialog and Memory Consolidationsupporting
confidence: 81%
“…It is interesting to note that REM-like 1.5–3.0 Hz hippocampal/parahippocampal activity increased during the transition from wakefulness to sleep, reaching an average of 82% of tonic REM just shortly after the first electrophysiological signs of sleep (Bódizs et al, 2005). The REM-like 1.5–3.0 Hz hippocampal/parahippocampal activity observed during the wake–sleep transition in this study supports the covert-REM sleep hypothesis of dreaming, which suggests that “hidden” REM sleep features are present during sleep onset, explaining the vivid hypnagogic imagery (Nielsen, 2000). Intriguingly, the two sleep states accompanied by the most vivid imagery (sleep onset and REM sleep) are indeed characterized by a similar hippocampal/parahippocampal slow activity pattern.…”
Section: Hippocampal–neocortical Dialog and Memory Consolidationsupporting
confidence: 81%
“…First, DRF varies according to the sleep stage preceding awakening (e.g., Dement and Kleitman, 1957b; Nielsen, 2000, for a review). More dream reports are obtained after an awakening during rapid eye movement (REM) sleep than after an awakening during non-REM (NREM) sleep.…”
Section: Experimental Research On Dreamingmentioning
confidence: 99%
“…First, by definition, NREM dreaming is clearly not moving the brain to awakening to the same extent REM does. Also, non-REM dreaming apparently only occurs to a limited extent in light sleep stages (Foulkes, 1962; Nielsen, 2000). Wake-up hypothesis posits that it is not dreaming per se that wakes people up, but the intrinsic triggering of the ARAS.…”
Section: Wake-up Hypothesis Predictive and Explanatory Powermentioning
confidence: 99%