2021
DOI: 10.22146/ijccs.67392
|View full text |Cite
|
Sign up to set email alerts
|

Covid-19 Hoax Detection Using KNN in Jaccard Space

Abstract: Social media has become a communication key to spark thinking, dialogue and action around social issues. Hoax is information that added or subtracted from the content of the actual news. The spread of unconfirmed Covid-19 news can cause public concern. The purpose of this research was to modify KNN with Jaccard Space in the classification of hoax news related to Covid-19. The data used from Jabar Saber Hoaks and Jala Hoaks. The classification results with KNN with Jaccard Space and stemming Nazief & Adrian… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 16 publications
0
2
0
2
Order By: Relevance
“…Untuk membangun model, kami menggunakan salah satu algoritma yang dapat melakukan klasifikasi data, yaitu algoritma Naive Bayes Classifier. Penelitian sebelumnya melakukan deteksi berita hoax Covid19 menggunakan algoritma K-Nearest Neighbor (KNN) [17], dan mendapatkan akurasi model akurasi sebesar 81%. Selain model yang digunakan pada penelitian sebelumnya berbeda, sumber data yang digunakan untuk deteksi hoax berita Covid19 pada penelitian sebelumnya juga berbeda.…”
Section: Hasil Dan Pembahasanunclassified
See 1 more Smart Citation
“…Untuk membangun model, kami menggunakan salah satu algoritma yang dapat melakukan klasifikasi data, yaitu algoritma Naive Bayes Classifier. Penelitian sebelumnya melakukan deteksi berita hoax Covid19 menggunakan algoritma K-Nearest Neighbor (KNN) [17], dan mendapatkan akurasi model akurasi sebesar 81%. Selain model yang digunakan pada penelitian sebelumnya berbeda, sumber data yang digunakan untuk deteksi hoax berita Covid19 pada penelitian sebelumnya juga berbeda.…”
Section: Hasil Dan Pembahasanunclassified
“…Dibandingkan dengan hasil penelitian sebelumnya yang juga melakukan deteksi berita hoax Covid19 menggunakan algoritma K-Nearest Neighbor (KNN) [17], algoritma Naïve Bayes Classifier yang diterapkan pada penelitian ini menghasilkan akurasi sebesar 81%. Hasilnya 5.1% lebih besar dibandingkan deteksi berita hoax menggunakan KNN pada penelitian sebelumnya yang mendapatkan akurasi sebesar 75.89%.…”
Section: Gambar 5 Akurasi Model Naïve Bayes Classifierunclassified
“…Nevertheless, some of this information is false or part of a hoax. Several studies have focused on anticipating the emergence of false or hoax information on the internet, for instance in Arabia [1], Indonesia [2,3], India [21], and other countries. It has become a particular concern for researchers to prevent readers from being easily deceived by false information.…”
Section: Introductionmentioning
confidence: 99%
“…The K-Nearest Neighbour (KNN) method, based on the Jaccard Space, has previously been used to detect false information about COVID-19 in Indonesia [3]. The information was obtained from traditional media sources, Jabar Saber Hoaks and Jala Hoaks.…”
Section: Introductionmentioning
confidence: 99%