Neonates exhibit an increased risk of sepsis mortality compared with adults. We show that in contrast to adults, survival from polymicrobial sepsis in murine neonates does not depend on an intact adaptive immune system and is not improved by T cell-directed adaptive immunotherapy. Furthermore, neonates manifest an attenuated inflammatory and innate response to sepsis, and have functional defects in their peritoneal CD11b ؉ cells. Activation of innate immunity with either a Toll-like receptor 4 (TLR4) or TLR7/8 agonist, but not a TLR3 agonist, increased the magnitude, but abbreviated the early systemic inflammatory response, reduced bacteremia, and improved survival to polymicrobial sepsis. TLR4 agonist pretreatment enhanced peritoneal neutrophil recruitment with increased oxidative burst production, whereas the TLR7/8 agonist also enhanced peritoneal neutrophil recruitment with increased phagocytic ability. These benefits were independent of the adaptive immune system and type I interferon signaling. Improving innate immune function with select TLR agonists may be a useful strategy to prevent neonatal sepsis mortality.
IntroductionSepsis causes profound defects in innate and acquired immunity. In septic adults, circulating leukocytes fail to mount an attenuated inflammatory response, monocytes have defective antigen presentation in part due to reduced MHC class II expression, and dendritic cells and lymphocytes exhibit increased apoptosis. [1][2][3][4] These deficiencies contribute to a failure to clear primary pathogens, an increased propensity to develop superinfections, and an inability to mount adaptive immune responses. Considerable progress has been made in understanding the pathogenesis of and identifying potential immunomodulatory therapies for treating sepsis in adult animals. For example, MyD88 and type I interferon signaling pathways 5,6 are important requisites for innate and inflammatory host defense responses to pathogens. 7,8 Stimulating the innate immune system with Toll-like receptor (TLR) agonists improves survival in adult animal models of sepsis. 9,10 Similarly, absence of the adaptive immune system 11 or an inability of B cells to produce antibodies 12 predisposes adult mice to a poor outcome in sepsis. Correction of adaptive immune dysfunction by prevention of lymphocyte apoptosis or treatment with agonistic glucocorticoid-induced tumor necrosis factor (TNF) receptor antibody (anti-GITR) to stimulate effector T-cell function, improves survival in animal models of adult sepsis. 11,13 These studies highlight the importance of both the innate and adaptive immune systems in eliminating invading pathogens in adult mammals. However, the mechanisms of protective immunity in neonates that do not possess a fully intact immune system, and who develop sepsis at increased rates, 14 are less clear.More than 1 million babies die each year worldwide within the first 4 weeks of life from sepsis. 15 Neonatal sepsis mortality is higher than in children and adults, 16,17 peaking in premature infants, where r...